On convex vectorial optimization in linear spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convex Topological Linear Spaces.

Introduction. In an earlier article [9] the author developed at some length the theory of certain mathematical objects which he called linear systems. It is the purpose of the present paper to apply this theory to the study of convex topological linear spaces. This application is based on the many-to-one correspondence between convex topological linear spaces and linear systems which may be set...

متن کامل

Convex Optimization on Banach Spaces

Greedy algorithms which use only function evaluations are applied to convex optimization in a general Banach space X . Along with algorithms that use exact evaluations, algorithms with approximate evaluations are treated. A priori upper bounds for the convergence rate of the proposed algorithms are given. These bounds depend on the smoothness of the objective function and the sparsity or compre...

متن کامل

Convex Sets and Convex Combinations on Complex Linear Spaces

Let V be a non empty zero structure. An element of Cthe carrier of V is said to be a C-linear combination of V if: (Def. 1) There exists a finite subset T of V such that for every element v of V such that v / ∈ T holds it(v) = 0. Let V be a non empty additive loop structure and let L be an element of Cthe carrier of V . The support of L yielding a subset of V is defined by: (Def. 2) The support...

متن کامل

network optimization with piecewise linear convex costs

the problem of finding the minimum cost multi-commodity flow in an undirected and completenetwork is studied when the link costs are piecewise linear and convex. the arc-path model and overflowmodel are presented to formulate the problem. the results suggest that the new overflow model outperformsthe classical arc-path model for this problem. the classical revised simplex, frank and wolf and a ...

متن کامل

On asphericity of convex bodies in linear normed spaces

In 1960, Dvoretzky proved that in any infinite dimensional Banach space X and for any [Formula: see text] there exists a subspace L of X of arbitrary large dimension ϵ-iometric to Euclidean space. A main tool in proving this deep result was some results concerning asphericity of convex bodies. In this work, we introduce a simple technique and rigorous formulas to facilitate calculating the asph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 1977

ISSN: 0022-3239,1573-2878

DOI: 10.1007/bf00933455